Vandets vej til træets top

Træer er smukke, træer er livsnødvendige og træer er højteknologi. Forskere har for første gang bygget et fungerende syntetisk system, der kan efterligne træers passive transport af vand fra rod til top. Det er en lille revolution med et utal af fremtidige anvendelsesmuligheder.


Læs hele artiklen som pdf


Da ingeniører i begyndelsen af 1800-tallet byggede de første stationære dampmaskiner for at pumpe vand ud af minerne, kunne end ikke de kraftigste af dem løfte vandet mere end ni meter op igennem røret. Det viste sig at være teoretisk umuligt at komme højere, fordi vandsøjlen i virkeligheden ikke løftes af pumpens 'sug' - men af det atmosfæriske tryk, der skubber væsken op nedefra, når pumpen mindsker trykket i røret. Ved komplet vakuum i røret vil vandet maksimalt kunne stå 10,3 meter højt.

Misundeligt kiggede ingeniørerne på træerne ved siden af minerne. Hvordan kunne træer så klare at løfte vand 40-60 meter - ja, helt op til over 100 meter, som tilfældet er med det store californiske nåletræ Sequoia?

Faktisk har biologer og ingeniører i århundreder spurgt sig selv om, hvad det er for et trick, træer bruger til at transportere vandet fra deres rødder op til deres blade. Den fremherskende teori har været, at træer virker som en væge: Tab af vanddamp fra bladene reducerer vandtrykket i bladet i forhold til det atmosfæriske tryk, hvilket får det flydende vand i jorden til at blive suget passivt op i rødderne, bevæge sig op igennem stammen, og derved udligne trykforskellen til bladene og holde dem vandfyldte.

Processen kaldes transpiration, men den forklarer ikke, hvordan en træstamme er anderledes end et almindeligt sugerør, og derfor heller ikke, hvorfor den er så meget bedre til at transportere vandet opad end de energikrævende pumper.

I 1895 foreslog den irske plante­biolog Henry Horatio Dixon sammen med ingeniøren John Joly, at transporten opad må skyldes vandmolekylernes gensidige tiltrækning, der skaber en form for træk. De kaldte deres mekaniske forklaringsmodel for 'cohesion-tension theory' (sammenhængs-spændtheds-teorien), som gik imod et stort antal biologer, der understøttede en mere vitalistisk teori om en form for aktiv transport. Men helt konkret har man ikke kunnet eftervise teorien før nu, 113 år efter den blev formuleret for første gang.

Negativt absolut tryk
Det er de to kemiingeniører Tobias D. Wheeler og Abraham D. Stroock fra Cornell University i New York, der nu eksperimentelt har bekræftet og forfinet Dixons og Jolys oprindelige idé. Planters fundamentale trick består i at skabe en enorm trykforskel mellem atmosfæren og det indre i bladenes væv.

Inde i vævet, i det såkaldte xylem, er der nanometersmå porer, som holder vandet i en tilstand af 'negativt tryk'. Et begreb, der i klassisk forstand kan synes meningsløst. Der er jo ikke noget, der kan være mindre end ingenting i vakuum, altså ved et tryk på nul.

Men vand er en meget speciel væske. Det kan sættes i en tilstand af negativt absolut tryk, på grund af dets høje overfladespænding. Idet de enkelte vandmolekyler tiltrækker hinanden, kan de sættes sådan sammen, at de trækker i hinanden som i et reb.

Man kender til fænomenet overfladespændning i almindelige vanddråber, der tiltrækker hinanden. Idet vandmolekylerne søger indad i dråben - der, hvor tiltrækningen er størst - vil dråbens overfladeareal altid søge at være så lille som muligt, altså en kugle. Når to dråber derfor rører ved hinanden, vil de trække i hinanden indtil en ny og større, rund dråbe er dannet.

Ifølge termodynamikken kan flydende vand ved negativt tryk kun eksistere i en metastabil tilstand. Vandet har med andre ord tendens til at skifte tilstand fra flydende form til gasform ved ganske små ændringer i enten tryk eller volumen. Hvis dette skete, ville der dannes luftembolismer inde i træet, som ville ødelægge vandtransporten. Men hvis man kan undgå dannelse af disse huller, kan der eksistere et tryk (som snarere burde kaldes et 'træk' eller en 'spændthed') på flere hundrede atmosfærer under nul.

Minutiøs kontrol
For at lave et syntetisk træ, var det derfor vigtigt for forskerne at bruge et materiale, hvori vandets forskellige tilstande kan kontrolleres minutiøst. De fandt det i den hydrogel, der bruges til at lave bløde kontaktlinser af. Ud over at kunne fungere som en væge, består den af bittesmå porer, der gør, at de kapillære processer kan skabe den nødvendige spændthed i væsken. Det betød blandt andet, at porerne måtte have en diameter målt i nanometer.

Hydrogelen gør netop det: Den blander vandet med gelens polymer-netværk, sådan at porerne effektivt er af molekylær størrelse. Ikke mere end ti nm. Det viser sig, at vandet kan være i ligevægt med gelen ved en luftfugtighed på 85 procent og ved et tryk på -220 atmosfærer. Ved at grave små kapillærer ned i gelen, kunne Wheeler og Stroock derfor skabe en struktur på lidt over fem centimeter, der i sin funktion efterligner et træ: To netværk af kapilærer, et til rødderne og et til bladene, forbundet med en enkelt kanal som 'stamme'.

Ved at eksperimentere med vandgennemstrømningen kunne de i en artikel i fagbladet Nature vise, at deres 'syntetiske træ' virker som en negativ trykpumpe, der kan generere op til ti atmosfærer i pumpe-potentiale - hvilket svarer til at trække vand mere end 100 meter op imod tyngdekraften. Til sammenligning er den tidligere rekord med nogle svampelignende strukturer 0,7 atmosfærer.

Bekræfter gammel teori
De to ingeniørers eksperimentelle forsøg og dets resultater er et stærkt tegn på, at Dixons og Jolys oprindelige teori er korrekt. Vandet trækker sig selv op i de lange smalle kapillærer, som et Münchhausen-reb, modsat tyngdekraften, i et evigt forsøg på at udjævne trykforskellen mellem rod og blade. Oppe ved membranen mellem bladet og luften er der en voldsom trykforskel, og når man punkterer et blad vil man også få vandet i de berørte kapillærer til at falde sammen med et plask, men da de er utallige, vil træet stadig kunne pumpe vand op, passivt og mekanisk.

Bortset fra at bekræfte, at transpiration er en mekanisk, og ikke en biologisk, proces, viser eksperimentet også nye veje til at studere vand under spændthed - noget der er et meget underbelyst fænomen.

»Vand er den mest studerede substans i verden, men alligevel findes der en stor metastabil region i dets fasediagram, som endnu ikke er blevet kortlagt,« sagde Stroock i forbindelse med offentliggørelsen af artiklen. Der er stadig masser af åbne spørgsmål i dette område, og det syntetiske træ kunne være et godt værktøj til at undersøge dem.

Teknologiske anvendelser
De teknologiske anvendelser venter nu på at blive udviklet. Træet viser, at der ikke findes nogen fundamental grænse for at gøre brug af væsker ved et stort negativt tryk.

Det mest opsigtsvækkende resultat er, at det syntetiske træ konstant kan ekstrahere væske fra en beholder med undermættet vanddamp (dvs. fra luft med 95 procents luftfugtighed), hvilket betyder, at det vil være teknisk muligt at lave rent vand i områder, der normalt anses for at være for tørre til landbrug, eller som er alt for forurenede til at levere drikkevand.

De syntetiske træer ville også kunne bruges til at udvikle effektive passiv-systemer til overførslen af varme over lange afstande og mod tyngdekraften. For eksempel kunne 'bladene' i sådan et system trække en kølende væske op i en bygning, hvor den så kunne fordampe i solvarmen under taget. Vanddampen ville derefter fordele sig og kondenseres forneden, hvilket ville få temperaturen til at falde.

Et sådant passivt kølingssystem, som kaldes 'heat pipes', bruges allerede på centimeterskala i bærbare computere, hvor varmedampe transporteres ud til ventilatoren. Principperne bag det syntetiske træ ville kunne bruges til at skalere teknologien op i husstørrelse.

0 comments:

There was an error in this gadget